
FAST: a Transducer Based

Language for Manipulating Trees

Presented By:

Loris D’Antoni

Joint work with:

Margus Veanes, Ben Livshits, David Molnar

Motivation

Trees are common input/output data structures

– XML query, type-checking, etc…

– Compilers/optimizers (from parse tree to parse tree)

– Tree manipulating programs: data structures
algorithms, ontologies, etc…

2

HTML Sanitization

Removing malicious active code from HTML
documents is a tree transformation

body

script

malicious

code

div

p

“Today I’m happy”

body

div

p

“Today I’m happy”

SANITIZE

3

What do we Need?

We want to write these single transformations
separately to avoid errors

4

Remove
malicious URLs

Replace
deprecated tags

Remove bad
elements
(scripts…)

Interesting Properties

Composition:
T(x) = T2(T1(x))

Type-checking:
given two languages
I,O

T(I) is always in O

Pre-image: compute the
input that produces a
particular output

To achieve speed

Check if the sanitizer ever
produces a malicious
output

Produce counterexamples if
type-checking fails

5

DEMO: http://rise4fun.com/Fast/jN

http://rise4fun.com/Fast/jN

FAST Compiler

FAST code

Transducers
Analysis

and
optimization

C#

6

SMT solver

Stages by Example

7

mapC mapC2

Transducers

CHOOSING THE RIGHT FORMALISM

8

Semantics as Transducers

Goal:

find a decidable class

of tree transducers

that can express the previous examples

9

Top Down Tree Transducers
[Engelfriet75]

q(a(x1,x2))  b(c,q1(x1))

Decidable properties: type-checking, etc…

Domain expressiveness: only finite alphabets

a b

c

q

q1

x1 x2 x1

10

Symbolic Tree Transducers [PSI11]

q(λa.a>3,(x1,x2))  λa.a+1,(λa.a-2,q1(x1))

Decidable properties: type-checking, etc…

Domain expressiveness: infinite alphabets using predicates
and functions

Structural expressiveness: can’t delete a node without
reading it first

5 5+1

5-2

q

q1

x1 x2 x1

Such that

5>3 is true

11

Alphabet theory has to
be DECIDABLE

We’ll use Z3 to check
predicate satisfiability

Improving structural expressiveness

Transformation: delete the left child if its root greater
than 5

If we delete the node we can’t check that the left child was
actually greater than 5

1

2 3

q 1

3q

12

Regular Look-Ahead (RLA)

??

Regular Look Ahead (TOPR)

Transformation: delete a node if its left child is greater than 5

Rules can ask whether the children are in particular languages
– p1: the language of trees whose root is greater than 5
– p2: the language of all trees

Decidable properties: type-checking, etc…
Domain expressiveness: infinite alphabets
Structural expressiveness: good enough to express our examples

1

7 3

q
p1 p2

1

3q Transformation

now is safe

13

Decidability Complexity
Structural

Expressiveness
Infinite

alphabets

Top Down Tree
Transducers

[Engelfriet75]
V V X X

Top Down Tree
Transducers with

Regular Look-ahead
[Engelfriet76]

V V ~ X

Streaming Tree
Transducers

[AlurDantoni12]
V X V X

Data Automata
[Bojanczyk98] ~ X X V

Symbolic Tree
Transducers

[VeanesBjoerner11]
V V X V

Symbolic Tree
Transducers RLA

V V ~ V

14

COMPOSITION OF SYMBOLIC
TRANSDUCERS WITH REGULAR
LOOKAHEAD

15

Composition of STTR

This is not always possible!!

Find the biggest class for which it is possible

16

T1

T2

T1 o T2

Classes of STTR

DETERMINISTIC: at most one transducer rule applies
for each input tree

LINEAR: each child appear at most once in the right
hand side of each rule

17

xq

x+1

q2q1

linear

nonlinear

x+1

q2q1

When can we Compose?

Theorem: T(x) = T2(T1(x))

definable by a Symbolic Tree Transducers with RLA if

– T1 is deterministic, OR

– T2 is linear

All our examples fall in this category

18

Alphabet theory has to
be DECIDABLE

We’ll use Z3 to check
predicate satisfiability

Pre-image as Composition

19

T O?

Domain(T o O)

FAST: Decidable by Design

20

Composition

Type-checking

Pre-image

Symbolic Tree Transducers with RLA

SMT Solver for Alphabet Theory

CASE STUDIES AND EXPERIMENTS

21

Case Studies and Experiments

Program Optimization:
Deforestation of functional programs

Verification:

HTML sanitization

Analysis of functional programs

Augmented reality app store

22

Infinite

Alphabets:

Integer

Data types

Deforestation

Removing intermediate data structures from programs

ADVANTAGE: the program is a single transducer reads the input
list only once, thanks to transducers composition

23

alphabet ILIst [i : int] { nil(0), cons(1) }
trans mapC: IList IList {

nil() to nil [0]
| cons(x) to cons [(i+5)%26] (mapC x)

}
def mapC2: IList IList := compose mapC mapC

Deforestation: Speedup

1,313

4,686

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

0 100 200 300 400 500

M
ill

is
e

co
n

d
s

Number of composed map functions

Fast No Fast

24

f(f(f(…f(x)...)

(f;f;f;…;f)(x)

Analysis of Functional Programs

25

AR Interference Analysis

Recognizers output data that can be seen as a
tree structure

Spine

Hip Neck

HeadKnee

Ankle

Foot

…. ….

26

Apps as Tree Transformations

Applications that use recognizers can be
modeled as FAST programs

27

trans addHat: STree -> STree
Spine(x,y) to Spine(addHat(x), y)

| Neck(h,l,r) to Neck(addHat(h), l, r)
| Head(a) to Head(Hat(a))

Composition of Programs

Two FAST programs can be composed into a
single FAST program

p1

p2

p1;p2

28

Interference analysis

Apps can be malicious: try to overwrite outputs of other apps

Apps interfere when they annotate the same node of a
recognizer’s output

We can compose them and check if they interfere statically!!
– Put checker in the AppStore and analyze Apps before approval

Interfering apps

Add cat ears Add hat

Add pin to a city Blur a city

Amazon Buy Now button Malicious Buy Now button

29

Interference Analysis in Practice

100 generated FAST programs, up to 85 functions each

Check statically if they conflict pairwise for ANY possible input

Checked 99% of program pair in less than 0.5 sec!

For an App store these are perfectly fine

No Cheap Talk

31

Conclusion

FAST: a versatile language for tree manipulating
programs with decidable analysis

Symbolic tree transducers with RLA

FAST is online: http://rise4fun.com/Fast/

32

http://rise4fun.com/Fast/

