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Motivation

Trees are common input/output data structures

– XML query, type-checking, etc…

– Compilers/optimizers (from parse tree to parse tree)

– Tree manipulating programs: data structures 
algorithms, ontologies, etc…
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HTML Sanitization

Removing malicious active code from HTML 
documents is a tree transformation
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What do we Need?

We want to write these single transformations 
separately to avoid errors
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Remove 
malicious URLs

Replace
deprecated tags

Remove bad 
elements 
(scripts…)



Interesting Properties 

Composition: 
T(x) = T2(T1(x))

Type-checking: 
given two languages 
I,O

T(I)  is always in O

Pre-image: compute the 
input that produces a 
particular output

To achieve speed

Check if the sanitizer ever 
produces a malicious 
output

Produce counterexamples if 
type-checking fails
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DEMO: http://rise4fun.com/Fast/jN

http://rise4fun.com/Fast/jN


FAST Compiler

FAST code

Transducers
Analysis

and
optimization

C#
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SMT solver



Stages by Example
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mapC mapC2

Transducers



CHOOSING THE RIGHT FORMALISM
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Semantics as Transducers

Goal: 

find a decidable class 

of tree transducers

that can express the previous examples
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Top Down Tree Transducers 
[Engelfriet75]

q(a(x1,x2))  b(c,q1(x1))

Decidable properties: type-checking, etc…

Domain expressiveness: only finite alphabets

a b

c

q

q1

x1 x2 x1
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Symbolic Tree Transducers [PSI11]

q(λa.a>3,(x1,x2))  λa.a+1,(λa.a-2,q1(x1))

Decidable properties: type-checking, etc…

Domain expressiveness: infinite alphabets using predicates 
and functions

Structural expressiveness: can’t delete a node without 
reading it first

5 5+1

5-2

q

q1

x1 x2 x1

Such that

5>3 is true
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Alphabet theory has to 
be DECIDABLE

We’ll use Z3 to check 
predicate satisfiability



Improving structural expressiveness

Transformation: delete the left child if its root greater 
than 5

If we delete the node we can’t check that the left child was 
actually greater than 5

1

2 3

q 1

3q
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Regular Look-Ahead (RLA)

??



Regular Look Ahead (TOPR)

Transformation: delete a node if its left child is greater than 5

Rules can ask whether the children are in particular languages
– p1: the language of trees whose root is greater than 5
– p2: the language of all trees

Decidable properties: type-checking, etc…
Domain expressiveness: infinite alphabets
Structural expressiveness: good enough to express our examples

1

7 3

q
p1 p2

1

3q Transformation 

now is safe
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Decidability Complexity
Structural

Expressiveness
Infinite 

alphabets

Top Down Tree 
Transducers

[Engelfriet75]
V V X X

Top Down Tree 
Transducers with 

Regular Look-ahead
[Engelfriet76]

V V ~ X

Streaming Tree 
Transducers 

[AlurDantoni12]
V X V X

Data Automata
[Bojanczyk98] ~ X X V

Symbolic Tree 
Transducers

[VeanesBjoerner11]
V V X V

Symbolic Tree
Transducers RLA

V V ~ V
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COMPOSITION OF SYMBOLIC 
TRANSDUCERS WITH REGULAR 
LOOKAHEAD
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Composition of STTR

This is not always possible!!

Find the biggest class for which it is possible
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T1

T2

T1 o T2



Classes of STTR 

DETERMINISTIC: at most one transducer rule applies 
for each input tree

LINEAR: each child appear at most once in the right 
hand side of each rule
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xq
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nonlinear
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When can we Compose?

Theorem: T(x) = T2(T1(x))

definable by a Symbolic Tree Transducers with RLA if

– T1 is deterministic, OR

– T2 is linear

All our examples fall in this category
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Alphabet theory has to 
be DECIDABLE

We’ll use Z3 to check 
predicate satisfiability



Pre-image as Composition
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T O?

Domain(T o O)



FAST: Decidable by Design
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Composition

Type-checking

Pre-image

Symbolic Tree Transducers with RLA

SMT Solver for Alphabet Theory



CASE STUDIES AND EXPERIMENTS
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Case Studies and Experiments

Program Optimization: 
Deforestation of functional programs

Verification: 

HTML sanitization

Analysis of functional programs

Augmented reality app store
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Infinite

Alphabets:

Integer

Data types



Deforestation

Removing intermediate data structures from programs

ADVANTAGE: the program is a single transducer reads the input 
list only once, thanks to transducers composition
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alphabet ILIst [i : int] { nil(0), cons(1) }
trans mapC: IList IList {

nil() to nil [0]
| cons(x) to cons [(i+5)%26] (mapC x)

}
def mapC2: IList IList :=  compose mapC mapC



Deforestation: Speedup
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f(f(f(…f(x)...)

(f;f;f;…;f)(x)



Analysis of Functional Programs
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AR Interference Analysis

Recognizers output data that can be seen as a 
tree structure

Spine

Hip Neck

HeadKnee

Ankle

Foot

…. ….
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Apps as Tree Transformations

Applications that use recognizers can be 
modeled as FAST programs
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trans addHat: STree -> STree
Spine(x,y) to Spine(addHat(x), y)

| Neck(h,l,r) to Neck(addHat(h), l, r)
| Head(a) to Head(Hat(a))



Composition of Programs

Two FAST programs can be composed into a 
single FAST program

p1

p2

p1;p2
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Interference analysis

Apps can be malicious: try to overwrite outputs of other apps

Apps interfere when they annotate the same node of a 
recognizer’s output

We can compose them and check if they interfere statically!!
– Put checker in the AppStore and analyze Apps before approval

Interfering apps

Add cat ears Add hat

Add pin to a city Blur a city

Amazon Buy Now button Malicious Buy Now button
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Interference Analysis in Practice

100 generated FAST programs, up to 85 functions each

Check statically if they conflict pairwise for ANY possible input

Checked 99% of program pair in less than 0.5 sec!

For an App store these are perfectly fine



No Cheap Talk
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Conclusion

FAST: a versatile language for tree manipulating 
programs with decidable analysis

Symbolic tree transducers with RLA

FAST is online: http://rise4fun.com/Fast/
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http://rise4fun.com/Fast/

